Bivalent mRNA booster broadens humoral immunity against SARS-CoV-2 Omicron subvariants

In a recent study posted to the bioRxiv* server, researchers at Emory University, Stanford University, and the National Institute of Allergy and Infectious Diseases evaluated whether bivalent coronavirus disease 2019 (COVID-19) boosters conferred protection against new Omicron subvariants.

Study: mRNA bivalent booster enhances neutralization against BA.2.75.2 and BQ.1.1. Image Credit: NIAIDStudy: mRNA bivalent booster enhances neutralization against BA.2.75.2 and BQ.1.1. Image Credit: NIAID

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Background

Two new subvariants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Omicron, BA.2.75.2 and BQ.1.1, share the R346T mutation. It is of particular concern because it substantially reduces the efficacy of bivalent COVID-19 messenger ribonucleic acid (mRNA) boosters. These novel booster vaccines have been introduced recently in the US post the emergence of highly mutated Omicron VOC. They use the ancestral and the Omicron BA.5 spike (S) as immunogens.

However, after their authorization and uptake, more Omicron subvariants have been identified with mutations in the receptor binding domain (RBD) that confer them with the potential to escape vaccine sera. In fact, the R346T mutation, which has arisen in many Omicron subvariants, confers them with the potential to escape vaccine-elicited and approved monoclonal antibodies.

About the study

The present study evaluated serum samples from vaccine booster recipients divided into three cohorts. The first, second, and third study cohorts comprised one monovalent booster, two monovalent boosters, and bivalent booster recipients. The team collected serum samples from seven to 28 days, 70 to 100 days, and 16 to 42 days after booster vaccinations from these three cohorts.

They used an in vitro live-virus focus neutralization test (FRNT) assay for quantifying neutralizing antibody response among these three cohorts. More specifically, they compared FRNT50 geometric mean titers (GMT) of Omicron subvariants, including BA.1, BA.5, BA.2.75.2, and BQ.1.1. against the wild-type SARS-CoV-2 strain. For samples with a low limit of detection (LoD) of 1:20, the researchers assigned an arbitrary FRNT50 of 10.

Study findings and conclusion

Individuals in the study cohorts that received one or two monovalent boosters exhibited much-reduced FRNT titers against Omicron subvariants. The effect was most profound against BA.2.75.2 and BQ.1.1, which have the R346T mutation. On the contrary, BA.5-containing bivalent booster recipients exhibited good neutralizing activity against all Omicron subvariants.

In the monovalent booster cohort, the FRNT50 GMTs for WT strain, BA.1, BA.5, BA.2.75.2, and BQ.1.1. were 758, 60, 50, 23, and 19, respectively. For the two monovalent booster cohorts, the FRNT50 GMTs were 1812, 205, 142, 65, and 53 for WT strain, BA.1, BA.5, BA.2.75.2, and BQ.1.1, respectively. Compared to WT, the overall reduction in neutralization titers varied for different Omicron subvariants. It decreased from nine to 15 and 28 to 39-fold for BA.1 and BA.5, and BA.2.75.2 and BQ.1.1., respectively.

Likewise, relative to the WT strain, the authors observed a reduction in neutralization titers of four-fold against BA.1 and BA.5 and 11- and 21-fold against BA.2.75.2 and BQ.1.1, respectively, in the bivalent booster cohort. The BA.5-containing bivalent booster recipients neutralized all Omicron subvariants more effectively. This observation was consistent with findings in individuals with breakthrough Omicron infections. They also showed broadened neutralizing activity against other Omicron subvariants.

The study results suggested that the bivalent mRNA booster vaccine broadened humoral immunity against the Omicron subvariants. Indeed, there is a substantial serological benefit of bivalent booster immunizations.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:
  • Preliminary scientific report. mRNA bivalent booster enhances neutralization against BA.2.75.2 and BQ.1.1, Meredith E Davis-Gardner, Lilin Lai, Bushra Wali, Hady Samaha, Daniel Solis, Matthew Lee, Andrea Porter-Morrison, Ian Thomas Hentenaar, Fumiko Yamamoto, Sucheta Godbole, Daniel C Douek, Frances Eun-Hyung Lee, Nadine Rouphael, Alberto Moreno, Benjamin A Pinsky, Mehul S Suthar, bioRxiv pre-print 2022, DOI: https://doi.org/10.1101/2022.10.31.514636, https://www.biorxiv.org/content/10.1101/2022.10.31.514636v1
  • Peer reviewed and published scientific report. Davis-Gardner, Meredith E., Lilin Lai, Bushra Wali, Hady Samaha, Daniel Solis, Matthew Lee, Andrea Porter-Morrison, et al. 2022. “Neutralization against BA.2.75.2, BQ.1.1, and XBB from MRNA Bivalent Booster.” New England Journal of Medicine, December. https://doi.org/10.1056/nejmc2214293https://www.nejm.org/doi/10.1056/NEJMc2214293.

Article Revisions

  • May 16 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Neha Mathur

Written by

Neha Mathur

Neha is a digital marketing professional based in Gurugram, India. She has a Master’s degree from the University of Rajasthan with a specialization in Biotechnology in 2008. She has experience in pre-clinical research as part of her research project in The Department of Toxicology at the prestigious Central Drug Research Institute (CDRI), Lucknow, India. She also holds a certification in C++ programming.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Mathur, Neha. (2023, May 16). Bivalent mRNA booster broadens humoral immunity against SARS-CoV-2 Omicron subvariants. News-Medical. Retrieved on November 22, 2024 from https://www.news-medical.net/news/20221102/Bivalent-mRNA-booster-broadens-humoral-immunity-against-SARS-CoV-2-Omicron-subvariants.aspx.

  • MLA

    Mathur, Neha. "Bivalent mRNA booster broadens humoral immunity against SARS-CoV-2 Omicron subvariants". News-Medical. 22 November 2024. <https://www.news-medical.net/news/20221102/Bivalent-mRNA-booster-broadens-humoral-immunity-against-SARS-CoV-2-Omicron-subvariants.aspx>.

  • Chicago

    Mathur, Neha. "Bivalent mRNA booster broadens humoral immunity against SARS-CoV-2 Omicron subvariants". News-Medical. https://www.news-medical.net/news/20221102/Bivalent-mRNA-booster-broadens-humoral-immunity-against-SARS-CoV-2-Omicron-subvariants.aspx. (accessed November 22, 2024).

  • Harvard

    Mathur, Neha. 2023. Bivalent mRNA booster broadens humoral immunity against SARS-CoV-2 Omicron subvariants. News-Medical, viewed 22 November 2024, https://www.news-medical.net/news/20221102/Bivalent-mRNA-booster-broadens-humoral-immunity-against-SARS-CoV-2-Omicron-subvariants.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Limited impact of prenatal COVID-19 exposure on child neurodevelopmental outcomes