Researchers use loop-seq technology to decipher the mechanical code of DNA

A new study has deciphered the mechanical code of DNA to reveal previously unknown ways in which nature encodes biological information in DNA sequence.

Led by Durham University, UK, an international team of researchers used a next-generation DNA-sequencing based technology called loop-seq, which they had developed, to show that the local sequence of bases along a region of DNA determines the local bendability of DNA.

Via a large number of measurements, coupled with computational analysis and machine learning, they determined the mechanical code, i.e., the mapping between local sequence and the local deformability of DNA.

Additionally, the researchers found that the mechanical code of DNA can be modified by 'methylation', which is a known chemical modification that DNA bases are routinely subject to at various stages in an organism's development. Abberant methylation has been linked to several cancers.

The discovery that methylation alters the mechanical code presents the possibility that biological development programmes, or diseases such as cancer, could be achieving a part of their effects on cells by altering the information encoded via the mechanical code.

The research was carried out along with colleagues from Johns Hopkins University, USA, Barcelona Institute of Science and Technology, Spain, and the University of Barcelona, Spain. It has been published in the journal Nature Structural & Molecular Biology.

DNA is a book containing instructions that cells need to survive. But it's a very special kind of book, where your ability to turn a page, repair a tear in the page, or fold a page, depend on the words written on the page. This is because in the book of DNA, those words somehow also control the mechanical properties of the paper."

Dr Aakash Basu, Study's Lead Author, Durham University

They point out that it is well known that, reading, copying, packaging, and repairing the genetic information stored in the sequence of bases (the As, Ts, Gs, and Cs) along DNA routinely involves processes that require local mechanical deformations of DNA.

The researchers provide evidence that in diverse organisms ranging from mammals to bacteria, nature and evolution has taken advantage of the mechanical code to locally control DNA deformability, and thus in turn, control critical biological processes that require mechanical distortions of DNA.

The researchers expect this knowledge to guide future therapeutic and bioengineering developments.

Source:
Journal reference:

Basu, A., et al. (2022) Deciphering the mechanical code of the genome and epigenome. Nature Structural & Molecular Biology. doi.org/10.1038/s41594-022-00877-6.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Histone markers predict human age with accuracy comparable to DNA methylation clocks