Researchers discover a new hexameric structure of the RepB protein and how it binds to DNA

In all living organisms, DNA replication is essential to ensure the genetic fidelity of the next generation. However, bacteria can also transfer genetic information horizontally to other bacteria. Many species of pathogenic bacteria have transmissible antibiotic resistance plasmids, which are often reproduced through a rolling circle replication machinery. Plasmid pMV158, which is present in the genus Streptococcus, belongs to this group. This plasmid determines resistance to tetracycline and its replication is initiated by the RepB protein.

Scientists led by Dr. Miquel Coll at the Institute for Research in Biomedicine (IRB Barcelona) and the Institute of Molecular Biology of Barcelona (IBMB-CSIC), and Dr. Gloria del Solar, at the Center for Biological Research (CIB-CSIC), have discovered a new hexameric structure of the RepB protein and how it binds to DNA. The study has involved biochemical and X-ray crystallography techniques. This structure points to a high degree of flexibility, which is attributed to the capacity of this protein to carry out a dual function, that is, to bind to two distinct positions of the plasmid and cut one of the DNA strands to separate it, thereby initiating replication.

In general, few resources are devoted to the development of new antibiotics and greater efforts should be made in this regard. It's also crucial to determine how resistance to antibiotics occurs and how it's propagated. This plasmid is also promiscuous, meaning that it is transferred between different bacterial species and, as a result, resistance to the antibiotic spreads."

Dr. Miquel Coll, Head of the Structural Biology of Protein & Nucleic Acid Complexes and Molecular Machines lab at IRB Barcelona and Professor at the CSIC

A growing medical concern

Antibiotics are medicines and, since their discovery, they have saved millions of lives. However, their indiscriminate use has caused the emergence of resistance and the rapid spread of bacteria carrying plasmids with resistance genes. These resistant bacteria have become a very serious problem, particularly in hospitals-;settings in which a large number of antibiotics are used and vulnerable patients are found.

"The massive use of antibiotics, both in humans and livestock, has led to growing resistance to them. Nosocomial infections, that is, those that occur in hospitals and that the patient did not have when admitted, affect 7% of patients and are difficult to treat due to the current resistance to antibiotics," adds Dr. Coll.

The first authors of the study are Dr. Cristina Machón, from IRB Barcelona, and Dr. José A Ruiz-Masó, from CIB-CSIC. The project has had the collaboration of the Automated Crystallography Platform at the IBMB and IRB Barcelona, and the X-ray data were gathered at the Alba (Barcelona, Spain) and ESRF (Grenoble, France) synchrotrons.

The study was funded by the Ministry of Science and Innovation.

Source:
Journal reference:

Machón, C., et al. (2023) Structures of pMV158 replication initiator RepB with and without DNA reveal a flexible dual-function protein. Nucleic Acids Research. doi.org/10.1093/nar/gkac1271.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Neoantigen DNA vaccines improve survival and immunity in triple-negative breast cancer patients