Global mapping of bushmeat activity to improve zoonotic spillover surveillance

In a recent study published in the journal Emerging Infectious Diseases, researchers use geospatial models based on published data and demographic and ecological drivers of bushmeat activity to predict the global rural areas of bushmeat activity. This information can be utilized to predict the emergence of zoonotic diseases.

Study: Mapping Global Bushmeat Activities to Improve Zoonotic Spillover Surveillance by Using Geospatial Modeling. Image Credit: HalizovS / Shutterstock.com

Background

Bushmeat comprises meat from terrestrial mammals in the wild that is procured primarily for human consumption in tropical and subtropical regions of the world. While terrestrial mammals constitute only 1.8% of the global biomass, more than 70% of the spillover events associated with zoonotic diseases are due to bushmeat and wildlife.

Bushmeat activities include the hunting, selling, and cooking bushmeat, all of which increase the probability of contact with infectious pathogens found in these wild mammals. As a result, these activities increase the likelihood of transmitting pathogens between humans and animal species, leading to local outbreaks, regional epidemics, and pandemics.

Although the demand for bushmeat also exists in urban settings, bushmeat is one of the primary sources of protein in rural regions. Nevertheless, bushmeat activities across geographic regions are not well documented.

Only a few studies have investigated bushmeat activities focusing on endangered mammals, conservation, or food security. Therefore, an epidemiology-based examination of global bushmeat activities is essential to successfully predict emerging zoonotic diseases.

About the study

In the present study, researchers used demographic and environmental covariates and published data to calibrate geospatial models to map bushmeat activities across rural areas in tropical and subtropical regions.

Existing peer-reviewed studies were used to collate data on bushmeat activities. In addition, demographic and environmental covariates were prepared. Notably, urban sites were excluded from the list of locations obtained from the various studies, as the covariates for urban sites would differ from those for rural sites.

The distribution data on terrestrial mammals and information on the mammals hunted for consumption and commercial purposes were used to develop a raster layer for bushmeat species diversity. A second raster layer comprising the distance between the locations of bushmeat activity and the nearest protected areas, such as wildlife sanctuaries, reserve forests, and natural parks, was also obtained.

Various geospatial models were used to map areas of bushmeat activities, which were then classified according to the probability of bushmeat activities into four categories. These included very low probability (below 0.2), low probability (between 0.2 and 0.5), intermediate probability (between 0.5 and 0.8), and high probability (above 0.8).

For each country, the cumulative area with a high probability of bushmeat activities was also calculated. Additionally, 100 locations in urban sites were identified where hypothetical surveys could be conducted to gain information about bushmeat activities.

Geographic distribution of articles from the literature used to model a map of global bushmeat activities (hunting, preparing, and selling bushmeat) to improve zoonotic spillover surveillance. We extracted data from 76 articles. Red dots indicate occurrences of bushmeat activities (n = 221) in 38 countries, and colored shading indicated the number of articles extracted per country.

Geographic distribution of articles from the literature used to model a map of global bushmeat activities (hunting, preparing, and selling bushmeat) to improve zoonotic spillover surveillance. We extracted data from 76 articles. Red dots indicate occurrences of bushmeat activities (n = 221) in 38 countries, and colored shading indicated the number of articles extracted per country.

Results

West Africa, Southeast Asia, and Central Africa were predominantly associated with bushmeat activities. In countries such as Congo, the Democratic Republic of Congo, Gabon, the Central African Republic, and Cameroon, the availability of domestic livestock was extremely low, thus making bushmeat an important food source.

Equatorial Guinea, which houses Africa’s largest bushmeat market, is also the country with the highest proportion of bushmeat activity-associated land. Various bans to limit bushmeat sales have been futile in this region.

The emergence of zoonotic diseases such as mpox and Ebola virus disease from these Central African regions with high bushmeat activity emphasizes the importance of monitoring bushmeat activities from an epidemiological context.

Vietnam and Laos were the two southeast Asian countries with the highest association with bushmeat activities. Notably, wildlife trade between Laos, Vietnam, and China has been previously reported. Studies have previously connected the outbreak of severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) in Guangdong province with trade with Laos and Vietnam.

In the Americas, bushmeat activities were limited to hidden markets in regions around the Amazon Basin and covered 10% of the predicted area. Among the demographic and environmental covariates, deforestation, mammal richness, and precipitation had the strongest impact on model distributions.

While deforestation allows deeper access to forests and more opportunities to transport bushmeat to markets, precipitation also influences bushmeat activities. Although in some regions, the dry season increases the hunting pressure, the decrease in conservation patrols during heavy rains in other regions results in an increase in bushmeat activities.

Conclusions

The study findings suggest that the modeling of bushmeat activities could significantly improve the prediction of zoonotic disease outbreaks at a global level. Targeted surveillance of regions with high bushmeat activity could help prevent zoonotic spillovers and increase the preparedness for global zoonotic disease outbreaks.

Journal reference:
Dr. Chinta Sidharthan

Written by

Dr. Chinta Sidharthan

Chinta Sidharthan is a writer based in Bangalore, India. Her academic background is in evolutionary biology and genetics, and she has extensive experience in scientific research, teaching, science writing, and herpetology. Chinta holds a Ph.D. in evolutionary biology from the Indian Institute of Science and is passionate about science education, writing, animals, wildlife, and conservation. For her doctoral research, she explored the origins and diversification of blindsnakes in India, as a part of which she did extensive fieldwork in the jungles of southern India. She has received the Canadian Governor General’s bronze medal and Bangalore University gold medal for academic excellence and published her research in high-impact journals.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Sidharthan, Chinta. (2023, March 28). Global mapping of bushmeat activity to improve zoonotic spillover surveillance. News-Medical. Retrieved on January 21, 2025 from https://www.news-medical.net/news/20230328/Global-mapping-of-bushmeat-activity-to-improve-zoonotic-spillover-surveillance.aspx.

  • MLA

    Sidharthan, Chinta. "Global mapping of bushmeat activity to improve zoonotic spillover surveillance". News-Medical. 21 January 2025. <https://www.news-medical.net/news/20230328/Global-mapping-of-bushmeat-activity-to-improve-zoonotic-spillover-surveillance.aspx>.

  • Chicago

    Sidharthan, Chinta. "Global mapping of bushmeat activity to improve zoonotic spillover surveillance". News-Medical. https://www.news-medical.net/news/20230328/Global-mapping-of-bushmeat-activity-to-improve-zoonotic-spillover-surveillance.aspx. (accessed January 21, 2025).

  • Harvard

    Sidharthan, Chinta. 2023. Global mapping of bushmeat activity to improve zoonotic spillover surveillance. News-Medical, viewed 21 January 2025, https://www.news-medical.net/news/20230328/Global-mapping-of-bushmeat-activity-to-improve-zoonotic-spillover-surveillance.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Updated Food Compass 2.0 improves food health ratings using new diet data