Microgravity severely disrupts rhythmic gene expression in humans, study shows

Simulated effects of microgravity, created by 60 days of constant bed rest, severely disrupts rhythmic gene expression in humans, according to a new study from the University of Surrey.

Astronauts exposed to microgravity experience changes to physiology, including immune suppression, increased inflammation, and reduced muscle mass and bone density. With the increase in human spaceflight, it is important to understand changes in the molecular mechanisms underlying these changes.

Lead author Professor Simon Archer, Professor of Molecular Biology of Sleep at the University of Surrey, said:

"This unique study represents the largest longitudinal dataset of time series gene expression in humans. Human gene expression varies rhythmically over the 24-hour day, and it is important to collect time series data rather than from just single time points to get a full picture of what occurs in the body when exposed to simulated microgravity. It also raises questions about the impact of constant bed rest on our bodies as we have identified a dramatic effect on the temporal organisation of human gene expression."

In a study coordinated by the European Space Agency at the MEDES space clinic in Toulouse, 20 men completed a 90-day protocol consisting of two weeks of baseline before 60 days of constant bed rest at a -six-degree head-down tilt angle to simulate the effects of microgravity experienced by astronauts. The protocol concluded with two weeks of recovery.

The research team analysed gene expression over a 24-hour time series during two days in baseline, three days in bed rest, and once in recovery. The results showed that 91 per cent of gene expression was affected by the protocol, with major disruption to the number, timing, and amplitude of rhythmic genes, which display changes in their mRNA every 24 hours. Disrupted gene expression is associated with protein translation, immune and inflammatory processes, and decreased muscle function. During the recovery period, disruption to muscle function was restored; however, lasting effects were identified with protein translation.

Space travel was once thought to be unachievable; however, the growth of the space industry means it is now a real possibility. A lot remains unknown about the impact of microgravity on the body, and it is important we know more about this before we start 'holidaying' in space. Building on what we have found, the second part of our study, using the same cohort of men, will investigate the impact microgravity has on sleep, circadian rhythms and hormones of individuals."

Derk-Jan Dijk, Senior Author, Professor of Sleep and Physiology and Director of the Surrey Sleep Research Centre

Professor Keith Ryden, Professor of Space Engineering and Director of the Surrey Space Centre, said:

"Human spaceflight is very much on the agenda again with astronauts soon returning to the moon via NASA's Artemis project alongside the growth of space tourism. In addition, new plans are in place for a UK astronaut going to the ISS in 2025 via the UKSA Axiom programme. It is great to see that with this new publication, the University of Surrey, well-known for its space research, is laying foundations for how to better manage the impact of the space environment on space travellers and ensure their safety."

This study was published in the journal iScience and received funding from the BBSRC.

Source:
Journal reference:

Archer, S. N., et al. (2024). Extensive dynamic changes in the human transcriptome and its circadian organisation during prolonged bed rest. iScience. doi.org/10.1016/j.isci.2024.109331.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
SPLICER shows promise in Alzheimer's and other diseases