COVID-19 and metallic taste: Study connects immunoglobulin levels to sensory impairment

In a recent study published in Scientific Reports, researchers investigated whether coronavirus disease 2019 (COVID-19)-related sensory deficiencies are associated with transcriptome changes in the foliate papillae area of the tongue.

Study: Impaired metal perception and regulation of associated human foliate papillae tongue transcriptome in long-COVID-19. Image Credit: Radu Bercan/Shutterstock.com
Study: Impaired metal perception and regulation of associated human foliate papillae tongue transcriptome in long-COVID-19. Image Credit: Radu Bercan/Shutterstock.com

Background

Chemosensory impairment, a common symptom of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, occurs in mild-to-moderately symptomatic individuals. This damage endures beyond the initial phase of the pandemic, lowering infected patients' psychological health and quality of life.

Previous cross-sectional studies found non-significant associations between trigeminal or taste sensations and smell distortions among post-acute COVID-19 patients. The SeCoMRI trial reported high positive predictive values for loss of taste and smell among SARS-CoV-2-infected individuals, with seropositivity associated with increased symptomatology.

About the study

In the present study, researchers expanded the SeCoMRI study to investigate the association between sensory perception changes after COVID-19 and foliate papillae transcriptomic alterations among seropositive individuals.

The study involved 158 Munich hospital employees with known SARS-CoV-2 immunoglobulin G (IgG) status who completed sensory perception questionnaires. The researchers matched the participants based on age, gender, and occupational SARS-CoV-2 exposure risk. They supplemented self-report questionnaires with objective taste assessments and transcriptomic microarray analyses of ribonucleic acid (RNA) from the tongue's foliate papilla.

Sensory tastes tested included metallic, spiciness, sweetness, sourness, and bitterness. The researchers asked the participants to assess the degree of sensory change in eight common food categories: tea, coffee, cheese, chocolate, meats, fruits, vegetables, and bread. Two weeks after completing the original questionnaire, 141 individuals participated in a qualitative taste perception study that comprised standard taste samples and forced choice tests vs. water.

The study divided individuals into four groups depending on their sensory impairments and SARS-CoV-2 immunoglobulin G (IgG) serostatus, utilizing diagnostic techniques such as paramagnetic particle chemiluminescent immunoassay, total antibodies, and enzyme-linked immunosorbent assays (ELISA) for IgG against spike-1 protein. Baseline samples were collected from August to September 2020, during the first wave of the pandemic in Germany, and a median of three months following SARS-CoV-2 immunoglobulin G detection.

The researchers conducted a sensory experiment to determine the relationship between reduced metal perception among IgG+ individuals and lower RNA transcript levels of metal perception-associated genes. In total, 43 patients provided tongue swabs for complete transcriptome research. They used gene ontology analysis to examine taste and smell genes differently expressed in foliate papillae of the tongue. They performed supervised-type partial least squares discriminant analysis (PLS-DA).

Results

IgG+/SSI+ participants had impaired metallic taste and smell perception. IgG+/SSI+ individuals also had reduced expression levels of 166 olfactory receptors and nine taste-associated receptors, with olfactory receptor family-1 subfamily A member 1 (OR1A1), OR1A2, olfactory receptor family-2 subfamily J member 2 (OR2J2), olfactory receptor 5K1 (OR5K1), and olfactory receptor family-1 subfamily G member 1 (OR1G1) connected to metallic perception. The findings point to olfactory involvement in the distortion of metal taste.

Taste and smell receptors are a part of the adenylate cyclase-modulating G protein-coupled receptor signaling system, downregulated following the SARS-CoV-2 infection. All IgG-negative and IgG+ subjects correctly recognized sweet and spicy solutions, but 80% of IgG+ and 78% of IgG-negative individuals detected metallic solutions.

In total, 790 genes showed increased transcript levels with positive fold changes exceeding 1.4 among SSI+ IgG+ patients, whereas 5,356 genes showed lower transcript expression with negative fold changes exceeding 1.4 compared to other groups. The three most enriched gene ontology keywords (detection of chemical stimulus involved in sensory smell perception, detection of chemical stimulus involved in sensory perception, and sensory smell perception) indicate the biological function of smell.

Among SSI+ IgG+ patients, transcript expression of two smell-associated genes, olfactory receptor 6C4 (OR6C4) and olfactory marker protein (OMP), were higher, with fold changes exceeding 1.4. Ten smell-related genes had reduced transcript expression and fold changes exceeding 1.4 in tongue foliate papillae. Eight genes encode bitter-sensing Taste receptor-2 member 38 (TAS2R) receptors, whereas taste receptor type 1 member 1 (TAS1R1) showed reduced transcript levels with fold changes exceeding 1.4.

In addition, SSI+ IgG+ individuals had greater transcript expression of metal regulatory transcription factor 1 (MTF1) than other groups. Olfactory receptors OR2J2, OR1A2, OR1G1, and OR1A1 were related to metallic taste perception and had decreased messenger RNA (mRNA) levels.

Conclusion

The study found that a high SARS-CoV-2 IgG titer might induce problems with metallic iron gluconate perception after infection. It also found lower mRNA expression levels of 166 olfactory receptors on the tongue in IgG+ and SSI+ subjects, indicating that they may play a functional role in chemosensory perception.

TAS1R1 downregulation indicates lower umami taste perception, but decreased expression levels of eight TAS2R bitter receptors correspond to sensory tasting testing. Future studies should investigate other viral illnesses that hinder metal perception and whether olfactory receptors on the tongue interact with taste receptor pathways.

Journal reference:
Pooja Toshniwal Paharia

Written by

Pooja Toshniwal Paharia

Pooja Toshniwal Paharia is an oral and maxillofacial physician and radiologist based in Pune, India. Her academic background is in Oral Medicine and Radiology. She has extensive experience in research and evidence-based clinical-radiological diagnosis and management of oral lesions and conditions and associated maxillofacial disorders.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Toshniwal Paharia, Pooja Toshniwal Paharia. (2024, July 09). COVID-19 and metallic taste: Study connects immunoglobulin levels to sensory impairment. News-Medical. Retrieved on January 22, 2025 from https://www.news-medical.net/news/20240709/COVID-19-and-metallic-taste-Study-connects-immunoglobulin-levels-to-sensory-impairment.aspx.

  • MLA

    Toshniwal Paharia, Pooja Toshniwal Paharia. "COVID-19 and metallic taste: Study connects immunoglobulin levels to sensory impairment". News-Medical. 22 January 2025. <https://www.news-medical.net/news/20240709/COVID-19-and-metallic-taste-Study-connects-immunoglobulin-levels-to-sensory-impairment.aspx>.

  • Chicago

    Toshniwal Paharia, Pooja Toshniwal Paharia. "COVID-19 and metallic taste: Study connects immunoglobulin levels to sensory impairment". News-Medical. https://www.news-medical.net/news/20240709/COVID-19-and-metallic-taste-Study-connects-immunoglobulin-levels-to-sensory-impairment.aspx. (accessed January 22, 2025).

  • Harvard

    Toshniwal Paharia, Pooja Toshniwal Paharia. 2024. COVID-19 and metallic taste: Study connects immunoglobulin levels to sensory impairment. News-Medical, viewed 22 January 2025, https://www.news-medical.net/news/20240709/COVID-19-and-metallic-taste-Study-connects-immunoglobulin-levels-to-sensory-impairment.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Mild COVID-19 disrupts brain connectivity and reduces memory function in adolescents and young adults