Machine learning early warning system reduces non-palliative deaths in general medicine unit

CHARTwatch, a machine learning model, shows promise in reducing patient mortality and improving outcomes in hospital settings, according to new CMAJ study.

Study: Clinical evaluation of a machine learning–based early warning system for patient deterioration. Image Credit: LALAKA/Shutterstock.comStudy: Clinical evaluation of a machine learning–based early warning system for patient deterioration. Image Credit: LALAKA/Shutterstock.com

In a recent study published in the Canadian Medical Association Journal (CMAJ), researchers clinically evaluated CHARTwatch, a model that predicts patient deterioration based on machine learning.

Background

Estimating, preventing, and reacting to the clinical deterioration of hospitalized individuals is critical to increasing patient safety. Unidentified clinical deterioration is the primary cause of unnecessary admissions to the intensive care unit (ICU), resulting in prolonged stays and increased fatality. Despite the extensive usage of prediction tools, the evidence for their usefulness is inconsistent.

A Kaiser Permanente study of 19 hospitals in Northern California revealed that an automated risk estimation model with remote nurse monitoring and on-the-ground actions by quick response teams reduced 30-day mortality by 16%. However, the technological and clinical characteristics of advanced early alert systems that might enhance clinical outcomes are unknown.

About the study

The present study investigated whether CHARTwatch could improve patient deterioration-related clinical outcomes.

The program predicts patient deterioration by using real-time data from electronic medical records. The time-aware multivariate adaptive regression spline (MARS) technique considered risk score projections from past encounters, changes in risk ratings since previous assessments, and time-series summaries.

The model communicated to nurses and physicians via texts and email, and it included a clinical route for the high-risk patient category, such as physician evaluation within an hour, increased vital sign monitoring, and alerts for palliative care consultations.

Patients admitted to St. Michael’s Hospital’s general internal medicine (GIM) unit received the intervention between 1 November 2020 and 1 June 2022. The pre-interventional period was between 1 November 2016 and 1 June 2020.

Propensity score-based weighting compared intervention recipients to individuals admitted before the intervention. Difference-indifferences assessment compared intervention recipients in the general internal medicine unit and non-recipients in the respiratory, nephrology, and cardiology units.

The primary endpoint was within-hospital mortality from non-palliative care, defined as fatalities that did not result from a recorded palliative care treatment.

Secondary endpoints were palliative deaths, total deaths, and transfers (a composite measure of deaths among palliative care recipients or shifts to inpatient palliative care units), ICU transfer, a composite measure of transfer to ICUs or mortality, and hospital stay length.

The International Classification of Diseases, tenth revision, Canadian version (ICD-10-CA), ascertained patient diagnosis. Researchers retrospectively calculated model predictions for control group patients.

Clinicians received alerts only in the interventional period for GIM unit patients. The study excluded individuals with coronavirus disease 2019 (COVID-19) or influenza and those with preadmission palliative care comorbidities. Logistic regressions estimated propensity scores for the GIM and subspecialty cohorts.

Researchers calculated the relative risk (RR) for analysis, adjusting for study covariates. Poisson regressions compared binary outcomes, and linear models compared continuous outcomes.

Study covariates included age, gender, comorbidities, hospitalizations in the prior six months, hospitalization month, vital signs, homelessness, neighborhood racial and new populations, neighborhood material resources, and admission to the ICU before transfer to subspecialty wards or GIM units.

Results

The analysis comprised 13,649 GIM unit admissions and 8,470 subspecialties unit admissions. In the general internal medicine unit, 482 patients became high risk in the interventional period, and 1,656 patients became high risk during the control period.

Non-palliative mortality was significantly lower during the interventional period than before the intervention among GIM patients (1.60% vs. 2.10%; RR, 0.7) but not among subspecialty unit patients (1.90% vs. 2.10%; RR, 0.9).

Among GIM patients at high risk of deterioration for whom CHARTwatch provided one or more alerts, the non-palliative mortality rates were 7.1% during the interventional period and 10% before the intervention (RR, 0.7).

The team found no significant difference in the subspecialty groups (10% vs. 11%; RR of 0.98). Difference-indifference assessments yielded an RR reduction of 0.8 for mortality from non-palliative care in the general internal medicine unit.

In the held-out testing data, the model demonstrated 53% sensitivity and 31% positive predictive value (PPV) in detecting clinical deterioration during hospitalization (death or transfer to the ICU, step-up care, or palliative care unit).

Compared to the pre-interventional period, the intervention resulted in considerably more antibiotic and corticosteroid prescriptions and increased vital sign monitoring. These data indicate that the intervention was related to enhanced patient monitoring and therapies that might slow deterioration.

Conclusion

The study showed that deploying CHARTwatch for GIM admissions was related to a decreased probability of mortality from non-palliative care compared to the preintervention period.

The results show that early alert systems based on machine learning are potential technologies to improve healthcare outcomes.

However, one should interpret findings cautiously due to the potential unmeasured confounding. Future studies will assess equity-related factors of the intervention and the qualitative perspectives of clinical team members.

Journal reference:
Pooja Toshniwal Paharia

Written by

Pooja Toshniwal Paharia

Pooja Toshniwal Paharia is an oral and maxillofacial physician and radiologist based in Pune, India. Her academic background is in Oral Medicine and Radiology. She has extensive experience in research and evidence-based clinical-radiological diagnosis and management of oral lesions and conditions and associated maxillofacial disorders.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Toshniwal Paharia, Pooja Toshniwal Paharia. (2024, September 18). Machine learning early warning system reduces non-palliative deaths in general medicine unit. News-Medical. Retrieved on November 21, 2024 from https://www.news-medical.net/news/20240918/Machine-learning-early-warning-system-reduces-non-palliative-deaths-in-general-medicine-unit.aspx.

  • MLA

    Toshniwal Paharia, Pooja Toshniwal Paharia. "Machine learning early warning system reduces non-palliative deaths in general medicine unit". News-Medical. 21 November 2024. <https://www.news-medical.net/news/20240918/Machine-learning-early-warning-system-reduces-non-palliative-deaths-in-general-medicine-unit.aspx>.

  • Chicago

    Toshniwal Paharia, Pooja Toshniwal Paharia. "Machine learning early warning system reduces non-palliative deaths in general medicine unit". News-Medical. https://www.news-medical.net/news/20240918/Machine-learning-early-warning-system-reduces-non-palliative-deaths-in-general-medicine-unit.aspx. (accessed November 21, 2024).

  • Harvard

    Toshniwal Paharia, Pooja Toshniwal Paharia. 2024. Machine learning early warning system reduces non-palliative deaths in general medicine unit. News-Medical, viewed 21 November 2024, https://www.news-medical.net/news/20240918/Machine-learning-early-warning-system-reduces-non-palliative-deaths-in-general-medicine-unit.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Machine learning identifies cancer-driving mutations at CTCF binding sites