New laboratory method for quickly detecting active anthrax proteins

A new laboratory method for quickly detecting active anthrax proteins within an infected blood sample at extremely low levels has been developed by researchers at the National Institute of Standards and Technology (NIST), the U.S. Army Medical Research Institute of Infectious Diseases and the National Cancer Institute.

Current detection methods rely on injecting live animals or cell cultures with samples for analysis and require up to several days before results are available. Described* in an upcoming issue of the Journal of Biological Chemistry, the new method produces unambiguous results in about an hour. The researchers hope the system will ultimately be useful in developing fast, reliable ways to diagnose anthrax infections or to quickly screen large numbers of drugs as possible therapies for blocking the bacteria's toxic effects.

The method works by detecting changes in current flow when anthrax proteins are present in a solution. An anthrax protein ironically called "protective antigen" spontaneously forms nanometer-scale pores that penetrate the surface of an organic membrane. When a voltage is applied across the membrane, positively and negatively charged ions flow freely in both directions through the pore. When additional anthrax proteins called lethal factor (LF) or edema factor (EF) are present, however, the proteins bind to the outside of the pore and shut down the flow of ions in one direction. This change in current flow depends on the concentration of the proteins in the solution and can detect amounts as low as 10 picomolar (trillionths of a mole).

"We hope this system will lead to a method for rapidly screening agents that inhibit the binding of LF or EF to these pores," says NIST's lead investigator John Kasianowicz.

Live anthrax antibodies seem to do exactly that. When antibodies were present in the test solution and then LF was added, the current flow remained unchanged, indicating that the anthrax proteins were unable to bind properly. The long-term goal would be to find drugs with few side effects that also interfere with this binding process.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Next-generation metagenomic sequencing test quickly detects any kind of pathogen