Enzyme Mst3b is essential for regenerating damaged axons in live animal model, say researchers

Enzyme could lead to a possible treatment for brain and spinal cord injury

Researchers at Children's Hospital Boston report that an enzyme known as Mst3b, previously identified in their lab, is essential for regenerating damaged axons (nerve fibers) in a live animal model, in both the peripheral and central nervous systems. Their findings, published online by Nature Neuroscience on October 25, suggest Mst3b - or agents that stimulate it - as a possible means of treating stroke, spinal cord damage and traumatic brain injury. Normally, neurons in the central nervous system (the brain and spinal cord) cannot regenerate injured nerve fibers, limiting people's ability to recover from brain or spinal cord injuries.

The study, led by Nina Irwin, PhD and Larry Benowitz, PhD, of the Laboratories for Neuroscience Research in Neurosurgery and the F.M. Kirby Neurobiology Center at Children's, builds on previous discoveries in the lab. In 2002, they showed that a naturally occurring small molecule, inosine, stimulates axon regeneration, later showing that it helps restore neurological functions in animal models of injury. In 2006, Benowitz and colleagues reported a previously unknown growth factor, oncomodulin, to have dramatic effects on axon growth.

Investigating the mechanisms of action of inosine and oncomodulin, Irwin and Benowitz discovered that both compounds activate Mst3b, an enzyme that appears to be a master regulator of a cell-signaling pathway controlling axon growth. Mst3b, a protein kinase, in turn activates signals that switch on the genes necessary for axons to grow.

Working with live rats whose optic nerve was damaged (a common model of central-nervous-system injury), Irwin, Benowitz and colleagues show that in the absence of Mst3b, axons show very little regeneration, even in the presence of factors known to enhance axon growth. In cell cultures, axon growth increased when activated Mst3b was expressed in the neurons.

"All the growth factors we've tested - oncomodulin, inosine, brain-derived neurotropic factor, nerve growth factor - act through Mst3b," says Benowitz. "In fact, activating Mst3b by itself is enough to cause growth even if there are no growth factors around. In terms of basic understanding of nerve cells, this is a very exciting finding."

Further studies examining how Mst3b exerts this growth-promoting effect may open up new avenues for treating brain and spinal cord injuries, Benowitz says. While this study explains why growth factors work - because they stimulate Mst3b - it's not yet known whether Mst3b is the best stimulator of axon growth from a practical drug-development standpoint, he adds.

Irwin is now working on possible gene therapy approaches involving Mst3b. Activating Mst3b may help overcome some natural "brakes" in the cell-signaling system that prevent nerve regeneration under normal conditions.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Can a mushroom protein bar improve memory? Study suggests cognitive benefits of Termitomyces fuliginosus