Protein alpha-2-beta-1 integrin suppresses metastasis

Mary Zutter and colleagues, at Vanderbilt University Medical Center, Nashville, have generated data that lead them to suggest that decreased expression of the protein alpha-2 integrin is predictive of tumor dissemination to distant sites and decreased survival in individuals with either breast or prostate cancer.

The researchers first studied the role of the protein alpha-2-beta-1 integrin (which is composed of the alpha-2 integrin protein and the beta-1 integrin protein) in cancer initiation and progression using a clinically relevant, spontaneous mouse model of breast cancer progression and metastasis (spread). Their data indicated that alpha-2-beta-1 integrin suppressed metastasis. To investigate whether the data had any immediate clinical applicability, a systematic analysis of microarray databases of human breast and prostate cancer was performed. The results of this analysis showed that decreased expression of the gene responsible for generating alpha-2 integrin was predictive of metastasis and decreased survival, leading to the suggestion that alpha-2 integrin expression could be a useful biomarker of metastatic potential and patient survival.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers discover mechanism affecting splicing process in retinal cells