Findings to help researchers study causes of congenital heart disease in future

Findings from the first large-scale sequencing analysis of congenital heart disease bring us closer to understanding this most common type of birth defect. The analysis found that spontaneous, or de novo, mutations affect a specific biological pathway that is critical to aspects of human development, including the brain and heart. Congenital heart disease can cause infants to be born with structural heart problems, which can be serious or even life-threatening.

The findings, which were published online today in the journal Nature, will inform future research into the causes of congenital heart disease.

This research was conducted through the National Heart, Lung, and Blood Institute- (NHLBI) supported Pediatric Cardiac Genomics Consortium, an international, multi-center collaborative research effort. The NHLBI is part of the National Institutes of Health.

The researchers looked at 362 parent-offspring trios, each of which included a child with congenital heart disease and his or her healthy parents, as well as 264 healthy parent-offspring trios, which served as the control group. The team conducted an analysis using state-of-the-art sequencing and genome mapping techniques and found that the children with congenital heart disease had a greatly increased rate of spontaneous mutations among genes that are highly expressed, or active, in the developing heart. Specifically, the analysis found that about 10 percent of the participant cases were associated with spontaneous mutations that arise during fetal development. Many of these genes were involved in a specific pathway that controls and regulates gene expression, which provides some insight into how the defects arise.

The Pediatric Cardiac Genomics Consortium provided resources to recruit thousands of patients in a small amount of time and used advanced sequencing techniques to identify genes that are implicated in congenital heart disease.

Future research aims to better understand how congenital heart disease develops in order to improve treatment and perhaps eventually prevent congenital heart disease in the early stages of heart formation.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Coronary artery calcium scores found to predict risk of heart attack and death in both men and women