Hydrogel method form synthetic scaffolds to support formation of blood vessels in engineered tissues

Next-generation hydrogels can form synthetic scaffolds to support the formation of replacement tissues and organs in the emerging area of regenerative medicine. Embedding peptides into the hydrogels stimulates the growth of essential microvascular networks to ensure a good blood supply. Novel, cutting-edge technology in which hydrogels functionalized with laminin-derived peptides were transplanted in a mouse cornea and were shown to support cell growth and blood vessel formation is described in an article in BioResearch Open Access, a peer-reviewed open access journal from Mary Ann Liebert, Inc., publishers. The article is available free on the BioResarch Open Access website.

Saniya Ali and coauthors from Rice University and Baylor College of Medicine, Houston, TX, and Duke University, Durham, NC, created a biodegradable hydrogel-based scaffold containing laminins. These peptides are key components of cells' extracellular matrix and play a critical role in the attachment, movement, and organization of endothelial cells, which form the lining of tubules such as blood vessels. Stimulating and controlling the formation and growth of these tubule-like, cell-lined structures is essential for ensuring sufficient blood supply to support large complex tissues or organs. The authors present their work and the results of animal studies in the article "Immobilization of Cell-Adhesive Laminin Peptides in Degradable PEGDA Hydrogels Influences Endothelial Cell Tubulogenesis."

"Enhancing vascularization in synthetic scaffolds is essential to support the formation of blood vessels in engineered tissues," says BioResearch Open Access Editor Jane Taylor, PhD, MRC Centre for Regenerative Medicine, University of Edinburgh, Scotland. "The work in this study demonstrates that laminin-derived peptide sequences immobilized in synthetic scaffolds can be used to regulate the formation of microvasculature in tissue-engineered constructs."

Source: Mary Ann Liebert, Inc./Genetic Engineering News

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Elevated blood glucose levels increase early-onset colorectal cancer risk