Research breakthrough in understanding mosquito reproductive process

Diseases transmitted by mosquitoes have contributed to the death and suffering of millions throughout human history, earning the mosquito the title as the world's most dangerous animal. Even today, several devastating mosquito-borne diseases (such as malaria, dengue fever and West Nile virus) continue to rage.

The urgent need to better control mosquito numbers and interfere with disease transmission has guided much mosquito research in laboratories worldwide. Female mosquitoes rely on a blood-meal as a source of nutrients required for reproduction. The thinking is that if the mechanisms that govern mosquitoes' egg production are better understood, novel approaches to controlling the reproduction and population of mosquitoes can be devised.

Now a team of scientists at the University of California, Riverside has made a research breakthrough in understanding, at the molecular level, one such mechanism related to the mosquito reproductive process. This mechanism includes small regulatory RNA molecules known as microRNAs or miRNAs.

The researchers report in this week's issue of the Proceedings of the National Academy of Sciences that they have identified microRNA-8 (miR-8) as an essential regulator of mosquito reproductive events. They note that its depletion in the female mosquito results in severe defects related to egg development and deposition.

Using newly established genetic tools in mosquito biology and doing analysis that identifies microRNA targets, they were able to show that miR-8 plays an essential role in the female mosquito "fat body" (fatty tissue analogous to the mammalian liver) by regulating a molecule, called "swim," that miR-8 directly targets. High levels of this molecule are detrimental to egg development.

"To our knowledge, this is the first time a mosquito miRNA has been investigated in this specific manner," said

While the researchers focused in this study on only Aedes aegypti, the mosquito that spreads dengue and yellow fever, their research results can be applied also to other disease-spreading mosquitoes.

"Our work provides insight into the importance of miRNAs in adult mosquito development and how these small regulatory molecules have potential to serve as novel control approach to regulate mosquito numbers," Raikhel said.

He explained that what his lab had set out to do was introduce birth control in mosquitoes.

"We were looking to find a way to disrupt the host-seeking behavior of mosquitoes by interrupting their egg development," he said. "With egg development halted, the population of mosquitoes would eventually collapse."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research links COVID-19 vaccines to temporary facial palsy in over 5,000 patients