Researchers find different immunological profiles in HIV-infected individuals who produce bNAbs

People living with HIV who naturally produce broadly neutralizing antibodies (bNAbs) that may help suppress the virus have different immunological profiles than people who do not, researchers report. While bNAbs cannot completely clear HIV infections in people who have already acquired the virus, many scientists believe a successful preventive HIV vaccine must induce bNAbs. The new findings indicate that bNAb production may be associated with specific variations in individual immune functions that may be triggered by unchecked HIV infection. Defining how to safely replicate these attributes in HIV-uninfected vaccine recipients may lead to better designed experimental vaccines to protect against HIV. The study was supported by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

Researchers led by a team at Duke University identified these immunologic variations by studying blood samples collected from people living with HIV by the NIAID-supported Center for HIV/AIDS Vaccine Immunology (CHAVI). The team compared blood samples from the 51 individuals with the highest level of bNAbs with samples taken from 51 individuals with few or no bNAbs present. The analysis performed revealed that many variations in immune cell function triggered by chronic HIV infection are associated with high levels of bNAbs. The specific changes included a higher frequency of antibodies that attack one's own cells, called autoantibodies; fewer immune regulatory T cells, which were also less active in these individuals; and a higher frequency of memory T follicular helper immune cells.

With this immune system configuration, the activity of antibody-producing immune cells called B cells may be less restricted because they are supported by T follicular helper cells and may be hindered by regulatory T cells. This, in turn, could lead to more efficient production of protective bNAbs against HIV. These findings support approaches to developing an HIV vaccine that involve modifying an individual's immune system to mimic these conditions through the addition of vaccine boosters called adjuvants or other means.

Source: NIH/National Institute of Allergy and Infectious Diseases

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Novel antibodies show promise for tumor targeting and RAD51 inhibition