DNA-mimicking synthetic molecule could lead to new HIV treatment

For the first time, researchers have developed a synthetic compound that mimics the surface of DNA and is able to inhibit several DNA-processing enzymes, including the enzyme used by HIV to insert its genome into that of a host cell.

Credit: Edgloris Marys/Shutterstock.com

It is hoped that the development, which was recently described in Nature Chemistry, could lead to new pharmaceutical tools for the treatment of HIV and other retroviral diseases.

DNA carries genetic information organized in two complementary strands that coil together to form a double helix. Various proteins interact with DNA to enable genetic instructions to be read and executed or, on the contrary, to prevent or regulate DNA expression.

In the case of HIV, a protein called HIV integrase interacts with DNA by binding to negative charges found on its surface, which enables viral DNA to be inserted into human DNA. Another enzyme called topoisomerase acts to release tensions within a supercoiled DNA molecule.

Chemist Ivan Huc is the leader of a research group that studies biomimetic supramolecular chemistry. His team creates synthetic molecules with a predetermined shape that allows them to accurately mimic polymers, proteins and DNA found in cells.

The backbones of these molecules are referred to as foldamers, because they readily assume folded conformations. Recently, the team, which is made up of scientists from CNRS, Inserm and Bordeaux University, developed foldamers that precisely mimic surface features of the DNA double helix and, importantly, the location of its negative charges.

The imitation is so precise that the foldamers act as a decoy for several proteins that would usually bind to DNA, including HIV integrase and topoisomerase. In fact, the researchers showed that these synthetic molecules serve as better binding molecules than natural DNA, even at low foldamer concentrations.

Although initially designed to resemble DNA, the foldamer owes its most useful and valuable properties to the features that differentiate it from DNA.”

Ivan Huc

Sally Robertson

Written by

Sally Robertson

Sally first developed an interest in medical communications when she took on the role of Journal Development Editor for BioMed Central (BMC), after having graduated with a degree in biomedical science from Greenwich University.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Robertson, Sally. (2019, June 19). DNA-mimicking synthetic molecule could lead to new HIV treatment. News-Medical. Retrieved on January 15, 2025 from https://www.news-medical.net/news/20180404/DNA-mimicking-synthetic-molecule-could-lead-to-new-HIV-treatment.aspx.

  • MLA

    Robertson, Sally. "DNA-mimicking synthetic molecule could lead to new HIV treatment". News-Medical. 15 January 2025. <https://www.news-medical.net/news/20180404/DNA-mimicking-synthetic-molecule-could-lead-to-new-HIV-treatment.aspx>.

  • Chicago

    Robertson, Sally. "DNA-mimicking synthetic molecule could lead to new HIV treatment". News-Medical. https://www.news-medical.net/news/20180404/DNA-mimicking-synthetic-molecule-could-lead-to-new-HIV-treatment.aspx. (accessed January 15, 2025).

  • Harvard

    Robertson, Sally. 2019. DNA-mimicking synthetic molecule could lead to new HIV treatment. News-Medical, viewed 15 January 2025, https://www.news-medical.net/news/20180404/DNA-mimicking-synthetic-molecule-could-lead-to-new-HIV-treatment.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New nanopore-based tool enables single molecule disease detection