Researchers report AI solution that could revolutionize medical research

Inside every cell, thousands of different proteins from the machinery that keeps all living things - from humans and plants to microscopic bacteria - alive and well. Almost all diseases, including cancer, dementia, and even infectious diseases such as COVID-19, are related to the way these proteins function.

Because each protein's function is directly related to its three-dimensional shape, scientists around the world have strived for half a century to find an accurate and fast method to enable them to discover the shape of any protein.

Today (Monday) researchers at the 14th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP14) will announce that an artificial intelligence (AI) solution to the challenge has been found.

Building on the work of hundreds of researchers across the globe, an AI program called AlphaFold, created by the London-based AI lab DeepMind, has proved capable of determining the shape of many proteins. It has done so to a level of accuracy comparable to that achieved with expensive and time-consuming lab experiments.

CASP14 is organized by Dr. John Moult (chair), University of Maryland, USA; Dr. Krzysztof Fidelis, UC Davis, USA; Dr. Andriy Kryshtafovych, UC Davis, USA; Dr. Torsten Schwede, the University of Basel and SIB Swiss Institute of Bioinformatics, Switzerland; and Dr. Maya Topf, Birkbeck, University of London, UK and CSSB (HPI and UKE) Hamburg, Germany.

Proteins are extremely complicated molecules, and their precise three-dimensional structure is key to the many roles they perform, for example, the insulin that regulates sugar levels in our blood and the antibodies that help us fight infections. Even tiny rearrangements of these vital molecules can have catastrophic effects on our health, so one of the most efficient ways to understand the disease and find new treatments is to study the proteins involved."

Dr. John Moult, Chair, Community-Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction

"There are tens of thousands of human proteins and many billions in other species, including bacteria and viruses, but working out the shape of just one requires expensive equipment and can take years.

"Nearly 50 years ago, Christian Anfinsen was awarded a Nobel Prize for showing that it should be possible to determine the shape of proteins based on their sequence of amino acids - the individual building blocks that makeup proteins. That's why our community of scientists has been working on the biennial CASP challenge."

Teams taking part in the CASP challenge are given the amino acid sequences for a set of around 100 proteins. While scientists study the proteins in the lab to determine their shape experimentally, about 100 participating CASP teams from more than 20 countries will try to do the same thing using computers. The results are assessed by independent scientists.

Dr Fidelis said: "The CASP approach has created an intense collaboration between researchers working in this field of science and we have seen how it has accelerated scientific developments.

"Since we first ran the challenge back in 1994, we have seen a succession of discoveries, each solving an aspect of this problem, so that computed models of protein structures have become progressively more useful in medical research."

During the latest round of the challenge, DeepMind's AlphaFold program has determined the shape of around two-thirds of the proteins with accuracy comparable to laboratory experiments*. AlphaFold's accuracy with most of the other proteins was also high, though not quite at that level.

The CASP organizers say that this success builds on achievements made in previous CASP rounds, both by the DeepMind team and other participants, and that other teams taking part in CASP14 have also produced some highly accurate structures during this round.

Dr Kryshtafovych said: "What AlphaFold has achieved is truly remarkable and today's announcement is a win for DeepMind, but it's also a triumph for team science. The unique and intense way we collaborate with researchers around the world through CASP, and the contributions from many teams of scientists over the years, have brought us to this breakthrough."

He adds: "Being able to investigate the shape of proteins quickly and accurately has the potential to revolutionize life sciences. Now that the problem has been largely solved for single proteins, the way is open for development of new methods for determining the shape of protein complexes - collections of proteins that work together to form much of the machinery of life, and for other applications."

Professor Dame Janet Thornton, Director Emeritus of EMBL's European Bioinformatics Institute (EMBL-EBI), who is not affiliated with CASP or DeepMind, said: "One of biology's biggest mysteries is how proteins fold to create exquisitely unique three-dimensional structures. Every living thing - from the smallest bacteria to plants, animals, and humans - is defined and powered by the proteins that help it function at the molecular level.

"So far, this mystery remained unsolved and determining a single protein structure often required years of experimental effort. It's tremendous to see the triumph of human curiosity, endeavor and intelligence in solving this problem. A better understanding of protein structures and the ability to predict them using a computer means a better understanding of life, evolution and, of course, human health and disease."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Antibiotic activity altered by interaction with nanoplastics, new research shows