Study maps structure and mechanism of a membrane enzyme that plays role in inflammation, cancer

Most drugs operate via the membranes that surround the body's cells. A study by researchers at Karolinska Institutet in Sweden has now mapped the structure and mechanism of MGST2, a membrane enzyme that, amongst other things, plays a part in chronic inflammation and cancer. The study, which is published in the journal Nature Communications, can make a significant contribution to the development of future drugs.

All our cells are enclosed in a fat-rich membrane. The cells' equivalent to organs, the organelles, are also enclosed by membranes. Embedded in the cell's internal and external membranes are proteins that regulate a large number of vital functions. Almost half of all drugs are effective via membrane proteins, such as enzymes, receptors and transporters.

Researchers at Karolinska Institutet have now, with the aid of X-ray crystallography, molecular dynamics simulations and biochemical techniques, been able to determine the 3D structure and mechanism of an important enzyme embedded in the cell's nuclear membrane.

The membrane enzyme MGST2 (Microsomal Glutathione S-Transferase 2) is the motor of a biochemical process that causes oxidative stress and the formation of oxygen radicals and, subsequently, DNA damage and cell death.

Membrane proteins are hard to study and it's fantastic that we've managed to determine the crystal structure for MGST2 at high resolution. One of the study's findings is that MGST2 is made up of three functional units that are controlled in an unusually sophisticated manner. The three units are involved in mutually coordinated movements, taking turns to perform the enzyme's function one active unit at a time."

Madhuranayaki Thulasingam, Study's First Author, Researcher, Department of Medical Biochemistry and Biophysics, Karolinska Institutet

MGST2 belongs to a larger family of enzymes that control the formation of prostaglandins and leukotrienes, signal molecules that regulate fever, pain and inflammation of the airways, joints, heart and blood vessels.

The results provide valuable information on the molecular regulation of other members of the enzyme family, many of which are important targets for future drug development.

"We hope that our results will be able to contribute to the development of drugs for many diseases characterised by increased synthesis of oxygen radicals and cell death, such as chronic inflammation, cancer and side-effects of radio- and chemotherapy," says principal investigator Jesper Z. Haeggström, professor at the Department of Medical Biochemistry and Biophysics, Karolinska Institutet.

Source:
Journal reference:

Thulasingam, M., et al. (2021) Crystal structures of human MGST2 reveal synchronized conformational changes regulating catalysis. Nature Communications. doi.org/10.1038/s41467-021-21924-8.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New research explores how omega-3 and omega-6 fatty acids may impact cancer rates