New spider web mechanism kills pathogens and virus responsible for COVID-19

Immunologists at McMaster University have discovered a previously unknown mechanism which acts like a spider web, trapping and killing pathogens such as influenza or SARS-CoV-2, the virus responsible for COVID-19.

The researchers have found that neutrophils, the most abundant white blood cells in the human body, explode when they bind to such pathogens coated in antibodies and release DNA outside of the cell, creating a sticky tangle which acts as a trap.

The findings, published online in the Proceedings of the National Academy of Science, are significant because little is understood about how antibodies neutralize viruses in the respiratory tract.

The discovery has implications for vaccine design and delivery, including aerosol and nasal spray technologies that could help the body head off infections before they have a chance to take hold.

"Vaccines can produce these antibodies that are present in our lungs, which are the first type of antibody to see viruses like flu or COVID-19, which infect our lungs and respiratory tracts," says the study's lead author Matthew Miller, an associate professor at McMaster's Michael G. DeGroote Institute for Infectious Disease Research and Canada's Global Nexus for Pandemics and Biological Threats. "Mechanisms that can stop the infection at the site where it enters our body can prevent the spread and serious complications."

By comparison, injectable vaccines are designed to bolster antibodies in the blood, but those antibodies are not as prevalent at the sites where infection begins.

We should be thinking carefully about next generation COVID-19 vaccines that could be administered in the respiratory tract to stimulate antibodies. We don't have many candidates right now that are focused on raising the mucosal response."

Hannah Stacey, Study Lead Author and Graduate Student in Miller Lab, McMaster University

Stacey recently won a major national scholarship from the Canadian Society for Virology for her work on COVID-19.

"If you want a lot of these antibodies that are really abundant in blood, then injections make the most sense, but if you want antibodies that are abundant in the respiratory tract, then a spray or an aerosol makes sense," she says.

Researchers caution that while the body's spider-web mechanism has the potential to be hugely beneficial, it can cause harm too, including inflammation and further illness when the web formation is uncontrollable.

They point to the early waves of the pandemic, prior to vaccinations, when these NETs, or neutrophil extracellular traps, were found in some patients' lungs, and had made their breathing more difficult.

"An immune response that is meant to protect you can end up harming you if it's not properly controlled," says Miller. "It's important to understand the balance of the immune system. If you have a lot of these antibodies before you get infected, they are likely going to protect you, but if the infection itself stimulates a lot of those antibodies it might be harmful."

Source:
Journal reference:

Stacey, H. D., et al. (2021) IgA potentiates NETosis in response to viral infection. Proceedings of National Academy of Science. doi.org/10.1073/pnas.2101497118.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
COVID-19 raises the risk of type 2 diabetes in children, study reveals