Nano printing technique produces model membranes

An international team of investigators based in the United States and Germany has modified the nanoscale printing technique known as dip-pen nanolithography to create large numbers of model cell membranes.

This method, published in the journal Small, could open the door to a better understanding of how the cell membrane functions and could lead to new ways of getting therapeutic drugs into cells.

Cell membranes are incredibly complex structures comprising a mixture of fatty molecules known collectively as phospholipids, proteins, and numerous other molecules, including cholesterol. These components hold each other together in a fluid manner –while the overall structure of the cell membrane is durable, the individual molecules in it are relatively free to move around within the confines of the membrane.

Chad Mirkin, Ph.D., and colleagues at Northwestern University, and Steven Lenhert, Ph.D., and his collaborators at the University of Munster in Germany, worked together on this project. Mirkin, who is the principal investigator of the Nanomaterials for Cancer Diagnostics and Therapeutics Center for Cancer Nanotechnology Excellence, invented dip-pen nanolithography, which uses an atomic force microscope to place individual molecules onto a surface, such as a glass slide or silicon chip.

In this work, the investigators determined the optimal experimental conditions needed to use phospholipids as “ink” that they could print onto glass slides, polystyrene sheets, or silicon wafers. By carefully controlling the humidity and application rate, the researchers were able to deposit multiple phospholipids in precise patterns. Once deposited onto a substrate, the phospholipids formed a lipid bi-layer characteristic of cell membranes. The investigators note that they should be able to use dip-pen nanolithography to design the type of complex physical and chemical networks of materials that are found in cell membranes.

This work is detailed in a paper titled, “Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns.” Investigators from Forschungszentrum Karlsruhe in Germany also participated in this study. An abstract of this paper is available at the journal’s website. View abstract.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
How different types of bread impact cancer risk