Research paper reveals Cav-1 protein's role in prostate tumor microenvironment

Researchers at the Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute have uncovered for the first time the vital role a popular protein plays in the stroma, the cell-lined area outside of a prostate tumor.

Researchers have long understood the function of the protein, Caveolin-1 (Cav-1), in prostate cancer, including its role in treatment resistance and disease aggressiveness. However, prior to this study, little was known about the role of Cav-1 within the stroma.

The study, published in the Journal of Pathology, found that a decreased level of the Cav-1 protein in the stroma indicated tumor progression - a function opposite to the known role of Cav-1 within a tumor. Inside the tumor, an increased level of this protein signifies tumor progression. These human tumor findings suggest that patients whose prostate tumor is surrounded by a stroma with decreased levels of the Cav-1 protein may have an overall worse prognosis and a higher chance of disease relapse.

"How a prostate tumor communicates with its microenvironment, or stroma, is a vital process we need to understand to assess the aggressiveness of a patient's disease and potential response to treatment," said Dolores Di Vizio, MD, PhD, associate professor in the Urologic Oncology Research Program and senior investigator of the study. "This research suggests that the cells surrounding a prostate tumor are equally as important as the tumor itself in helping understand the complexity of a man's disease. This early-stage research may provide a new, future marker that may ultimately aid diagnosis and treatment, and personalize prostate cancer therapy."

In addition to understanding the role of Cav-1 in the tumor microenvironment, researchers discovered that the loss of Cav-1 causes an increase of cholesterol in the stroma. Previous research findings suggest that cholesterol levels are related to aggressive prostate cancer, but cholesterol's role had never been evaluated within the stroma.

"Cholesterol has been shown to be a driver of prostate cancer progression," said Di Vizio. "For the first time in prostate cancer research, we found that when levels of Cav-1 decrease in the stroma, both cholesterol and androgens increase. This finding may partly explain a resistance to traditional treatments."

Though the findings are preliminary, the Cedars-Sinai researchers Di Vizio, Michael Freeman, PhD, vice chair of research in the Department of Surgery and professor/director of the Cancer Biology Program at the Samuel Oschin Comprehensive Cancer Institute, and post-doctoral fellows Matteo Morello, PhD, and Sungyong You, PhD, will continue evaluating the role of the Caveolin-1 protein in the stroma and its potential end benefit in patients.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Discovery of key protein for burning fat may lead to obesity treatments