New review highlights challenges of studying resistance to antiangiogenic treatment in preclinical models

New blood vessel growth, or angiogenesis, is critical for cancer to grow and spread throughout the body. Drugs that target vascular endothelial growth factor (VEGF) -- a key driver of angiogenesis -- are now approved for the treatment of several metastatic cancers. However, not all patients respond and many more eventually become resistant after initial treatment benefits.

While researchers have sought to identify possible mechanisms to explain drug resistance the methods to study have proven complex. Preclinical studies seeking to identify reasons for antiangiogenic treatment failure have relied on animal models of cancer because the complex interaction between the tumor and the "normal" blood vessels that the treatment targets is difficult to reproduce in a petri dish. But the use of animal models can also increase the varience in results.

In a review published in the journal Current Drug Targets, researchers at Roswell Park Cancer Institute in Buffalo, New York, examined this variability and found that the many mechanisms of resistance identified in laboratory models are based on inconsistent definitions of treatment failure. "Most studies involve only a few drugs and animal models that do not fully recapitulate clinically relevant metastatic disease," said Dr. John Ebos, Assistant Professor at the Departments of Cancer Genetics and Medicine at Roswell Park. "Many excellent studies have been performed; however, it is difficult to determine which are most applicable to patients."

The literature considered in this new review highlights the challenges of studying resistance to inhibitors of tumor angiogenesis in preclinical models and the need to improve methodology to help qualify and quantify treatment failure to predict alternative strategies that will be of greatest benefit to patients.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Patient-derived organoids: Transforming cancer research and personalized medicine