Bacterial DNA reveals a rise in antibiotic resistant genes

Antibiotic resistance in the natural environment is rising despite tighter controls over our use of antibiotics in medicine and agriculture, Newcastle University scientists have found.

Bacterial DNA extracted from soil samples collected between 1940 and 2008 has revealed a rise in background levels of antibiotic resistant genes.

Newcastle University's Professor David Graham, who led the research, said the findings suggest an emerging threat to public and environmental health in the future.

"Over the last few decades there has been growing concern about increasing antibiotic resistance and the threat it poses to our health, which is best evidenced by MRSA," explained Professor Graham, who is based in the School of Civil Engineering and Geosciences at Newcastle University.

"Despite increasingly stringent controls on our use of antibiotics, the background level of antibiotic resistant genes, which are markers for potential resistance, continues to rise in soils."

"This increases the chances of a resistant gene in a harmless bacteria being passed onto a disease-causing pathogen, such as a MRSA, with obvious consequences."

Published online this week in the academic journal Environmental Science and Technology, the report uses data taken from five sites in the Netherlands.

The team, which also includes Dr Charles Knapp and Dr Jan Dolfing, of Newcastle University, and Dr Phillip Ehlert, Wageningen University, in the Netherlands, found that 78 per cent of genes from four classes of antibiotics showed increasing levels since 1940 - despite continued efforts to reduce environmental levels.

Professor Graham said the next step would be to analyse soil samples from other parts of the world, although he expects to see similar results.

He adds: "The big question is that with more stringent European regulations and greater emphasis on conservative antibiotic use in agriculture and medicine, why are antibiotic resistant gene levels still rising?"

"Whatever the cause, this rise suggests an ever increasing risk of resistant genes being passed from environmental organisms to organisms of greater health concern."

Professor Graham contends that more complementary studies are desperately needed between environmental and public health researchers to determine whether this increasing 'pool' of resistance is actually contributing to harmful bacteria, such as MRSA.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Leveraging CGP and ctDNA for improved cancer outcomes