SATI gene editing could replace CRISPR

The ability to edit genes within living cells and organisms at all levels, using tools like the well-known and powerful CRISPR-Cas9, is one of the most sophisticated and useful advances in modern biology. However, the technique has been limited by a myriad of safety concerns.

Now, scientists at the Salk Institute have developed a potential game changer in this field – a new gene editor called SATI (intercellular linearized Single homology Arm donor mediated intron-Targeting Integration). This tool addresses multiple limitations of existing gene editing platforms.

The study was published in the journal Cell Research on August 23, 2019.

CRISPRJuan Gaertner | Shutterstock

It is not easy to change the genes within a living organism without causing harm. CRISPR-Cas9 can cut the DNA at a defective site and allow a new gene copy to be inserted, but in the process any number of inadvertent alterations could occur around the edges of the spliced segment, the effects of which are unknown and potentially lethal. Non-dividing cells are also notoriously difficult subjects for gene editing – but they make up most of the body’s tissues.

SATI is itself an advance on a new form of gene engineering also developed at Salk, called homology-independent targeted integration (HITI) which can introduce new genes into the DNA without having to cut out the old one. The technique uses an alternate DNA repair pathway to integrate the new DNA.

HITI, however, could not correct all mutations since it is not able to remove the defective segment from the DNA strand.

We sought to create a versatile tool to target these non-coding regions of the DNA, which would not affect the function of the gene and enable the targeting of a broad range of mutations and cell types.”

Mako Yamamoto, Senior Author

SATI uses either of two different types of DNA repair mechanisms to integrate an inserted DNA segment into the genome. This makes it much more versatile and less error-prone.

It can be used to fix different types of mutations, whether they involve the removal, replacement or addition of a part of the DNA strand, in a diverse spectrum of cells, in both dividing and non-dividing states.

Moreover, its target is the noncoding part of the DNA and thus it minimizes the possibility of introducing unwanted changes in the genome. Scientists hope to eventually use SATI to prevent genetic conditions like the neurologic disease called Huntington’s chorea which causes progressive paralysis and death, among others.

Normal DNA repair mechanisms will ensure the inserted minigene becomes part of the organism’s genome alongside the defective gene. It can thus exert the normal effects of the target gene without ever disrupting the rest of the genome, significantly reducing the harmful effects of the mutation. This is called “knock-in.”

Developing the technique

The scientists used a mouse experimental model which showed the effects of a single change in amino acid sequence within one specific protein, caused by a single point mutation where one nucleotide in the LMNA gene is replaced or deleted. This caused the mouse to show signs of aging very early in its lifespan, a syndrome called progeria. This mutation was not easily repaired with current genome-editing tools.

Using SATI, the researchers successfully inserted a good copy of the defective at the targeted site in a noncoding segment of the DNA, leaving the body to incorporate it into the normal DNA strand. This acts to produce the normal protein product, correcting the basic defect in progeria.

They found that the gene began to function normally, reversing the signs of aging, and increasing the lifespan of the mouse by 45%. In human terms, this is the equivalent of 10 more years of life!

From this successful proof-of-concept experiment, the scientists conclude that this method can be used to edit the genome for a wide range of applications. They plan to further refine and extend this technique, to enable its use in more cells at a time. They look forward to even better results as the procedure is optimized.

Further Reading

Journal reference:

Suzuki, K., et al. (2019). Precise in vivo genome editing via single homology arm donor mediated intron-targeting gene integration for genetic disease correction. Cell Research (2019). https://doi.org/10.1038/s41422-019-0213-0.

Dr. Liji Thomas

Written by

Dr. Liji Thomas

Dr. Liji Thomas is an OB-GYN, who graduated from the Government Medical College, University of Calicut, Kerala, in 2001. Liji practiced as a full-time consultant in obstetrics/gynecology in a private hospital for a few years following her graduation. She has counseled hundreds of patients facing issues from pregnancy-related problems and infertility, and has been in charge of over 2,000 deliveries, striving always to achieve a normal delivery rather than operative.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Thomas, Liji. (2019, September 09). SATI gene editing could replace CRISPR. News-Medical. Retrieved on November 22, 2024 from https://www.news-medical.net/news/20190902/SATI-gene-editing-could-replace-CRISPR.aspx.

  • MLA

    Thomas, Liji. "SATI gene editing could replace CRISPR". News-Medical. 22 November 2024. <https://www.news-medical.net/news/20190902/SATI-gene-editing-could-replace-CRISPR.aspx>.

  • Chicago

    Thomas, Liji. "SATI gene editing could replace CRISPR". News-Medical. https://www.news-medical.net/news/20190902/SATI-gene-editing-could-replace-CRISPR.aspx. (accessed November 22, 2024).

  • Harvard

    Thomas, Liji. 2019. SATI gene editing could replace CRISPR. News-Medical, viewed 22 November 2024, https://www.news-medical.net/news/20190902/SATI-gene-editing-could-replace-CRISPR.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study shows how a single defective BRCA1 gene accelerates cancer development