Scientists engineer bacterial cell wall with small molecules to combat diseases

A team of Yale University scientists has engineered the cell wall of the Staphylococcus aureus bacteria, tricking it into incorporating foreign small molecules and embedding them within the cell wall.

The finding, described online in the journal ACS Chemical Biology this week, represents the first time scientists have engineered the cell wall of a pathogenic "Gram-positive" bacteria-organisms responsible not only for Staph infections but also pneumonia, strep throat and many others. The discovery could pave the way for new methods of combating the bacteria responsible for many of the most infectious diseases.

The team engineered one end of their small molecules to contain a peptide sequence that would be recognized by the bacteria. In Staphylococcus aureus, an enzyme called sortase A is responsible for attaching proteins to the cell wall.

"We sort of tricked the bacteria into incorporating something into its cell wall that it didn't actually make," said David Spiegel, a Yale chemist who led the study. "It's as if the cell thought the molecules were its own proteins rather than recognizing them as something foreign."

The scientists focused specifically on the cell wall because it contains many of the components the cell uses to relate to its environment, Spiegel said. "By being able to manipulate the cell wall, we can in theory perturb the bacteria's ability to interact with human tissues and host cells."

The team used three different small molecules in their experiment - including biotin, fluorescein and azide - but the technique could be used with other molecules, Spiegel said, as well as with other types of bacteria. Another advantage to the new technique is that the scientists did not have to first genetically modify the bacteria in any way in order for them to incorporate the small molecules, meaning the method should work on naturally occurring bacteria in the human body.

Staph infections, such as the drug-resistant MRSA, have plagued hospitals in recent years. More Americans die each year from Staphylococcus aureus infections alone than from HIV/AIDS, Parkinson's disease or emphysema.

Being able to engineer the cell walls of not only Staphylococcus aureus but a whole family of bacteria could have widespread use in combating these illnesses, Spiegel said, adding that any number of small molecules could be used with their technique. "For example, if we tag these bacteria with small fluorescent tracer molecules, we could watch the progression of disease in the human body in real time." The molecules could also be used to help recruit antibodies that occur naturally in the bloodstream, boosting the body's own immune response to diseases that tend to go undetected, such as HIV/AIDS or cancer.

"This technique has the potential to help illuminate basic biological processes as well as lead to novel therapeutics from some of the most common and deadly diseases affecting us today," Spiegel said.

Source: Yale University

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers discover mechanism affecting splicing process in retinal cells