Newly discovered immunodeficiency can make people seriously ill from chickenpox virus

A mutation in one of the sensors that the immune system uses to detect viruses can, in rare cases, turn infections with the chickenpox virus into a life-threatening matter. For two out of every 10,000 people, it can lead to inflammation of the brain, and for twenty out of 10,000, to severe pneumonia, which can be particularly dangerous for pregnant women. The cause of these rare but serious diseases has thus far been unknown, and it has not been possible to predict who was in the danger zone.

A mapping of the genome in patients who have been very severely affected by these infections has now shown that they have mutations in what is known as the POL III sensor. This is the sensor which the immune system uses to recognize the genome of varicella zoster virus (VZV), which normally simply leads to chicken pox.

The immune system fails to activate

Analyses of cells from the affected patients showed that their cells did not detect the infection and consequently neither did they activate the immune system's defensive responses. This allowed the virus to spread to the brain, for example. If the mutated gene was repaired, the cells were able to fight the infection. This suggests that individuals with mutations in POL III have an increased risk of developing serious illness with the VZV infection.

"We cannot yet put an exact figure on how much the risk of complications is increased when you have this new immunodeficiency since we have looked at relatively few patients in our study. Neither do we know how large a proportion of all those who have inflammation of the brain and pneumonia have the defect. But we do know that this applies to both children and adults," says one of the driving forces behind the study, Professor with special responsibilities (MSO) Trine Hyrup Mogensen from the Department of Clinical Medicine and the Department of Biomedicine at Aarhus University.

The results have just been published in the scientific journal The Journal of Clinical Investigation.

Paves the way for personalized medicine

The results contribute with a genetic explanation of why some individuals are extremely susceptible to certain infections in contrast to others, and it is an important contribution to an emerging field of research. With the combination of clinical research and basic research, the researchers have succeeded in producing fundamental new knowledge about the immune system, and at the same time, provided a tool that can be used directly in clinical practice.

"Today it is possible to map the entire genomic composition of an individual. At the same time the last few decades have seen an explosion in our knowledge of the immune system. Together this means we are now slowly becoming able to understand the individual differences in susceptibility to infections at both the genetic and molecular level," says Søren Riis Paludan, who is professor at the Department of Biomedicine at Aarhus University and also one of the researchers behind the research project.

"In general terms, it opens up new possibilities with more individualized diagnosis and treatment of patients. Our study is an important contribution to this," adds Trine Hyrup Mogensen, who also works as a medical specialist in infectious diseases at Aarhus University Hospital.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Pasteurization effectively reduces H5N1 virus in milk but further testing is essential