Research finding could lead to first effective therapies, vaccines against dengue virus

Researchers at Vanderbilt University and the National University of Singapore have determined the structure of a human monoclonal antibody which, in an animal model, strongly neutralizes a type of the potentially lethal dengue virus.

The finding, reported today July 2 in the journal Science, could lead to the first effective therapies and vaccines against dengue, a complex of four distinct but related mosquito-borne viruses that infect about 390 million people a year and which are a leading cause of illness and death in the tropics.

"Scientists in the antibody discovery group of the Vanderbilt Vaccine Center continue to make great strides in developing novel antiviral drugs, such as this human antibody that not only kills dengue virus but also prevents enhanced dengue disease," said co-corresponding author and center director James Crowe Jr., M.D., Ann Scott Carell Professor.

The four "serotypes" of dengue are distinguished by different antigens, or proteins on the viral envelope that elicit immune responses. What makes dengue so challenging, and so dangerous, is that antibodies generated against one serotype do not protect against the others.

In fact, they actually can enhance infection by a second serotype, a process known as antibody-dependent enhancement (ADE) of infection. Sequential infections increase the risk for dengue hemorrhagic fever and dengue shock syndrome, characterized by fever, vomiting, internal bleeding and potentially fatal circulatory collapse.

The researchers previously generated human monoclonal antibodies in the lab against a complex epitope, or antigenic portion of the viral envelope. In the current study, they used cryo-electron microscopy to freeze samples at very low temperatures so they could visualize antibody-antigen binding almost down to the atomic level.

In this way they were able to identify a human monoclonal antibody against dengue virus type 2 (DENV2) that "locked" across an array of envelope proteins. In a mouse model, this prevented the virus from fusing to its target cell, thus it prevents infection.

The antibody also was remarkable in that it has a second major function - it blocks the binding of the other class of antibodies that otherwise would enhance infection.

This specific "epitope," or portion of the envelope proteins elicits a specific immune response, thus it is a potential target for the development of dengue vaccines and therapeutics, the researchers concluded.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New research identifies metabolic targets to combat antibiotic-resistant bacterial infections