New TSRI study may have important implications for better drug design

Scientists from The Scripps Research Institute Florida campus have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output. These new findings could aid future drug design by giving scientists an edge in fine tuning the signal between these partnered proteins—and the drug's course of action.

F. Scott Fitzgerald once said that the test of a first-rate intelligence is the ability to hold two opposed ideas in mind at the same time and still retain the ability to function. Now, scientists from the Florida campus of The Scripps Research Institute (TSRI) have found the biological equivalent of that idea or something very close.

For the first time, they have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output. These new findings could aid future drug design by giving scientists an edge in fine tuning the signal between these partnered proteins—and the drug's course of action.

"Thyroid, vitamin D and retinoid receptors all rely on integrated signals—their own signal plus a partner receptor," said TSRI Associate Professor Kendall Nettles, who led the study with TSRI colleague Associate Professor Douglas Kojetin. "These new findings will have important implications for drug design by clearly defining exactly how these signals become integrated, so we will be able to predict how changes in a drug's design could affect signaling."

The study was published recently in the journal Nature Communications.

Using a number of complementary technologies, including nuclear magnetic resonance (NMR), X-ray crystallography and hydrogen/deuterium exchange (HDX) mass spectrometry from the laboratory of Scripps Florida colleague Chair of the Department of Molecular Therapeutics Patrick R. Griffin, the scientists were able to determine the mechanism through which two signaling pathways become integrated.

The study focused on a small subset of nuclear receptors, a large family of proteins that regulate gene expression in response to signals from various binding partners, including steroids and fats. Once receptors sense the presence of these binding partners, they send out new signals that initiate other cellular processes.

"Nuclear receptors bind different types of molecules, and some of these receptors physically interact with each other to integrate different signals," Kojetin said. "Earlier studies basically accepted this without any structural evidence for communication between receptors. This is the first time that anyone has looked at what's actually going on at the atomic level."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New AI tool maps millions of CD8+ T cells to advance disease research